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Abstract

A bipartite graph G can be treated as a (1, 1) bipartite graph in the sense that, no two vertices
in the same part are at distance one from each other. A (2, 2) bipartite graph is an extension
of the above concept in which no two vertices in the same part are at distance two from each
other. In this article, analogous to complete (1, 1) bipartite graphs which have the maximum
number of pairs of vertices having distance one between them, a complete (2, 2) bipartite graph
is defined as follows. A complete (2, 2) bipartite graph is a graph which is (2, 2) bipartite and
has the maximum number of pairs of vertices (u, v) such that d(u, v) = 2. Such graphs are
characterized and their properties are studied. The expressions are derived for the determinant,
the permanent and spectral properties of some classes of complete (2, 2) bipartite graphs. A
class of graphs among complete (2, 2) bipartite graphs having golden ratio in their spectrum is
obtained.
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1 Introduction

The research background and motivation for the chosen topic are presented in the first part of
this section, while the preliminary terminologies used in the article are presented in the second.

1.1 Motivation and Research Background

A bigraph or a bipartite graph is a graphG vertex set of which can be partitioned into two parts V1
and V2 such that no two vertices from the same part are at distance one. A considerable variation
is taken from usual bipartite graphs and (2, 2) bipartite graphs are introduced in the literature by
K. M. Prasad et. al as follows.

Definition 1.1. [7] A graphG is said to be a (2, 2) bipartite graph if the vertex set V (G) can be partitioned
into a pair of nontrivial subsets V1 and V2 such that no two vertices from the same part are at distance two.
A bipartition of V (G)with the above properties is called a (2, 2) bipartition and the sets V1 and V2 are called
parts of the (2, 2) bipartition.

Throughout this article, a (2, 2) bipartite graph G is denoted with parts V1, V2 and E(G) = E
by G(V1 ∪ V2, E). Also, the usual bipartite graphs are referred as (1, 1) bipartite graphs. Trivially,
every complete graphKn and every totally disconnected graph is (2, 2) bipartite for every possible
partition of its vertex set V (G). The following is an example for (2, 2) bipartite graph showing the
bipartition.

V

1V

2

Figure 1: A (2, 2) bipartite graph.

It is interesting that every component in each of the parts of a (2, 2) bipartite graph is complete
[7]. Further chracterization of (2, 2) bipartite graphs is given by the following theorem.

Theorem 1.1. [7] The following statements are equivalent for every non trivial graph G.

i) G is (2, 2) bipartite.

ii) The vertex set V can be bipartitioned into V1 and V2 such that each component of the induced subgraphs
〈V1〉 and 〈V2〉 is complete and every vertex in 〈Vi〉 is adjacent with vertices of at most one component
of 〈Vj〉, j 6= i; i, j = 1, 2.

The graphsK1,3 and C5 are not (2, 2) bipartite and any graph withK1,3 or C5 as an induced sub-
graph is also not (2, 2) bipartite [7]. A tree is (2, 2) bipartite if and only if it is a path [7]. Authors
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of [7] have also characterized graphs which are both (1, 1) bipartite and (2, 2) bipartite.

A complete (1, 1) bipartite graph is a (1, 1) bipartite graph which has the maximum number
of pairs of vertices having distance one between them. Inspired by this insight of complete (1, 1)
bipartite graphs, a complete (2, 2) bipartite graph is defined as follows.

Definition 1.2. Let p, q be positive integers. A complete (2, 2) bipartite graph G with |V1| = p, |V2| = q
is a (2, 2) bipartite graph with maximum number of pairs of vertices (u, v) such that d(u, v) = 2 .

Before moving to the section of the main results of the article, some of the preliminary termi-
nologies and notations used in the latter part of the article are provided.

1.2 Preliminaries

Matrices serve as models for graphs, illuminating their structure and allowing the use of sim-
ple yet powerful linear algebraic techniques to investigate them. The determinant, permanent,
rank and eigenvalues are few of the powerful linear algebraic tools, which have been used ex-
tensively to study graphs. In specific, the parameters associated with the adjacency matrix of
graphs are studied more extensively. For a graph G, the notations rank(G), det(G), spec(G) and
per(G) describe the rank, determinant, eigenvalues and permanent of adjacency matrix of G re-
spectively . Ifµ1, µ2, . . . , µk are eigenvalues of the adjacencymatrix of a graphGwithmultiplicities

m1,m2, . . . ,mk, respectively, then spec(G) can be written as spec(G) =
(
µ1 µ2 . . . µk
m1 m2 . . . mk

)
. A

subgraph G1 of a graph G is said to be elementary if every component of G1 is a cycle or an edge.
The following theorem gives the expressions for determinant and permanent of a graph in terms
of its elementary spanning subgraphs [1].

Theorem 1.2. [1] Let G be a graph on n vertices. Then,

det(G) =
∑
G1

(−1)n−k1(G1)−k2(G1)2k2(G1), (1)

per(G) =
∑
G1

2k2(G1), (2)

where G1 is the elementary spanning subgraph of G, k1(G1) and k2(G1) are the number of components in
G1 which are edges and cycles respectively.

Some more properties of determinants and permanents of graphs are discussed in [4]. Readers
are referred to [10] for all the terminilogies used, but not described in this article.

This article comprises of four sections. Section 2 gives the characterization of complete (2, 2) bi-
partite graphs aswell as somegraphparameters associated. In Section 3, the results on det(G), per(G)
and spectrum(G) of some cases of complete (2, 2) bipartite graphs are presented while Section 4
presents a class of graphs which are golden graphs. This article is concluded with an open prob-
lem for the readers.
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2 Characterization

The following theorem characterizes complete (2, 2) bipartite graphs.

Theorem 2.1. LetG be a (2, 2) bipartite graph with (2, 2) bipartition {V1, V2}where |V1| = p and |V2| = q
such that p+ q = n and p ≥ q. ThenG is a complete (2, 2) bipartite graph if and only if it satisfies both the
conditions given below.

(i) V1 induces the complete graphKp.

(ii) Each vertex in V2 is adjacent with exactly one vertex in V1.

Proof. Let G be a (2, 2) bipartite graph and let v be a vertex in V2. By characterization theorem of
(2, 2) bipartite graphs, each components of both the parts are complete and no vertex in any part
is adjacent with vertices of more than one component of the other part. Hence, if the part V1 has
r components C1, C2, . . . , Cr, then the number of pairs of vertices of the form (v, ui) with ui ∈ V1
such that d(v, ui) = 2 becomes maximum of n1 − 1, n2 − 1, . . . , nr − 1, where ni is the number of
vertices in Ci, 1 ≤ i ≤ r. This becomes maximum when r = 1. When V1 has only one component,
the number of pairs of vertices (v, ui)with ui ∈ V1 is maximumwhen the vertex v is adjacent with
only one vertex of V1. Thus, given p ≥ q, the maximum number of vertices with distance two
between them equal to 2 results when every vertex of V2 is made adjacent with exactly one vertex
of the only complete component of V1.

Remark 2.1. For a given (2, 2) bipartition {V1, V2} with |V1| = p and |V2| = q (p ≥ q), the complete
(2, 2) bipartite graph has maximum number of pairs of vertices (ui, vk) with d(ui, vk) = 2 irrespective of
the structure of 〈V2〉. The number of such pairs is given by q (p− 1) if p ≥ q.

Following are some of the graphs (Figure 2) which are complete (2, 2) bipartite with |V1| = 4
and |V2| = 3.

v
1

v2

v
1

v2

v
1

v2

v
1

v2

Figure 2: Complete (2, 2) bipartite graphs on 7 vertices.

Note that there are 12 pairs of vertices (u, v) such that d(u, v) = 2, irrespetive of the structure of
〈V2〉 .

For a given positive integer n, a (1, 1) complete bipartite graph G of order n has maximum
number of pairs of vertices (u, v) such that d(u, v) = 1when the bipartition ofG is |V1| = |V2| = n

2 ,
when n is even and is |V1| = n+1

2 , |V2| = n−1
2 , when n is odd. Analogously, the following result

gives the values of p and q such that a complete (2, 2) bipartite graph G(V1 ∪ V2, E) with |V1| = p
and |V2| = q has maximum number of pairs of vertices (u, v) such that d(u, v) = 2.
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Corollary 2.1. For a given positive integer n, a complete (2, 2) bipartite graph G(V1 ∪ V2, E) of order n
has maximum number of pairs of vertices (u, v) such that d(u, v) = 2 if and only if

|V1| = |V2| =
n

2
or |V1| =

n

2
+ 1, |V2| =

n

2
− 1, for n even,

and
|V1| =

n+ 1

2
, |V2| =

n− 1

2
, for n odd.

Proof. The corollary above is proved separately when n is even and odd. Suppose n = 2k for
some integer k. Let |V1| = p, |V2| = q such that p + q = 2k and p ≥ q. Let f be the number of
pairs of vertices having distance two between them for given p and q. Since q = 2k − p, f(p) =
(2k − p)(p − 1) = 2kp − 2k − p2 + p. On maximizing f , |V1| = |V2| = n

2 or |V1| = n
2 + 1 and

|V2| = n
2 − 1 are obtained.

Following the same procedure for the case when n is odd, the maxima is obtained when |V1| =
n+1
2 and |V2| = n−1

2 .

For a complete (2, 2) bipartite graph G(V1 ∪ V2, E) with |V1| = p and |V2| = q (p ≥ q), we note
the following.

Remark 2.2. The bounds for the number of edges are given by,

p2 − p+ 2q

2
≤ |E(G))| ≤ p2 + q2 − p+ q

2
, if p > q,

and
p(p+ 1)

2
≤ |E(G)| ≤ p2, if p = q.

The equalities are attained when V2 induceKq andKq respectively.

Remark 2.3. Observe that, the distance between any two vertices in G is 1, 2 or 3. Hence, eccentricity of
any vertex is 1, 2 or 3. The diameter and radius of G are given by,

diam(G) ≤ 3,

rad(G) =


1, if both 〈Vi〉 are complete and one of the vertices

of V1 is adjacent with all the vertices of V2,

2, else.

3 Further Results

Determinantal and permanental properties of adjacency matrices of graphs are some of the
well studied areas. Note that if a graph G has a unique perfect matching, then det(G) = ±1.
Authors of [3] have proved that the determinant of the bipartite graph with at least two perfect
matchings and with all cycle lengths divisible by four is zero. Also, the permanent of the biadja-
cency matrix of a bipartite graph enumerates the perfect matchings. In this section, some linear
algebraic parameters of particular cases of complete (2, 2) bipartite graphs are explored. In a (1, 1)
bipartite graph G with bipartition V (G) = V1 ∪ V2, each vertex of Vi is adjacent to exactly one
vertex of Vj (i = 1, 2, i 6= j) results in a one factor graph. For the complete (2, 2) bipartite graph
analogous to this, the following results are derived.
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Theorem 3.1. LetG be a complete (2, 2) bipartite graph on n (n is even) vertices such that |V1| = |V2| =
p =

n

2
. Let both the parts Vi (i = 1, 2) induce the complete graph Kp and each vertex of Vi be adjacent to

exactly one vertex of Vj for i, j = 1, 2 and i 6= j. Then the det(G) = 0.

Proof. After relabeling the vertices, the adjacency matrix A of the graph G can be viewed as

A =

(
(J − I)p×p (I)p×p
(I)p×p (J − I)p×p

)
,

where J is a square matrix of order p in which every entry is 1. Since I and (J − I) commute,

det(A) = det
[
(J − I)2 − I2

]
= det

[
(J − I)2 − I

]
= det



p− 1 p− 2 p− 2 . . . p− 2
p− 2 p− 1 p− 2 . . . p− 2
...

p− 2 p− 2 p− 2 . . . p− 1

−

1 0 0 . . . 0
0 1 0 . . . 0
...
0 0 0 . . . 1




= det


p− 2 p− 2 p− 2 . . . p− 2
p− 2 p− 2 p− 2 . . . p− 2
...

p− 2 p− 2 p− 2 . . . p− 2


= 0.

The example for a graph that satisfies the conditions of the above theorem is given in Figure 3
.

V 1

V2

Figure 3: The complete (2, 2) bipartite graph analogous to one factor graph where |V1| = |V2| = 4.

Theorem 3.2. LetG be a complete (2, 2) bipartite graph on n (n is even) vertices such that |V1| = |V2| =
p =

n

2
. Let both the parts Vi (i = 1, 2) induceKp and each vertex of Vi is adjacent to exactly one vertex of

Vj for i 6= j and i, j = 1, 2. Then,

spec(G) =

(
p p− 2 0 −2
1 1 p− 2 p− 1

)
.

Proof. The adjacency matrix A of the graph G can be written as (after relabeling the vertices)

A =


(J − I)p×p (I)p×p

(I)p×p (J − I)p×p

 ,
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where J is a square matrix of order p.

It is known that, eig
(
M N
N M

)
= {eig(M+N), eig(M−N)}, where eig(A) represents eigenval-

ues of the matrix A. Thus, eig(A) = {eig(Jp), eig(Jp − 2I)}. Since eig(Jp) are p, 0 with respective
multiplicities 1, p−1 and eig(Jp−2I) are p−2,−2with respective multiplicities 1, p−1, the result
follows.

The Corollary 3.1 follows from the above theorem.

Corollary 3.1. LetG be a complete (2, 2) bipartite graph on n (n is even) vertices such that |V1| = |V2| =
p =

n

2
. Let both the parts Vi (i = 1, 2) induceKp and each vertex of Vi is adjacent to exactly one vertex of

Vj for i 6= j and i, j = 1, 2. Then rank(G) = (p+ 1).

Proof. The proof follows from the fact that the graph G has p + 1 nonzero eigenvalues counting
the multiplicities.

Among all complete (1, 1) bipartite graphs on n vertices, the star graphK1,n−1 has maximum
number of pairs (u, v) with d(u, v) = 2. The star graph is a special case of complete (1, 1) bipar-
tite graph where at least one of the parts has cardinality one. The star graph has det(K1,n−1) =

per(K1,n−1) = 0 and spec(K1,n−1) =

(√
n− 1 −

√
n− 1 0

1 1 (n− 2)

)
. Analogous to star graphs, a

complete (2, 2) bipartite graph with at least one part has cardinality one (Figure 4) is considered.

v
1

v2

Figure 4: Complete (2, 2) bipartite graph analogous to star graph.

The next theorem gives determinant, permanent and spectrum of such graphs.

Theorem 3.3. Let G be a connected complete (2, 2) bipartite graph such that |V1| = p > 1 and |V2| = 1.
Let V1 inducesKp and V2 inducesK1. Then det(G) = 0 if and only if p = 2. Further,

per(G) = Dp−1,

det(G) = (−1)p−3(p− 2),

where Dn = n!
n∑
i=2

(−1)i
i! .

Proof. Let vi be the only vertex of V2, which is adjacent with a vertex uk of V1. With every elemen-
tary spanning subgraph ofKp−1 induced by the vertices of V1 other than uk, one can associate the
edge (uk, vi) to get an elementary spanning subgraph of G. Conversely, from every elementary
spanning subgraph ofGwhich involves the edge (uk, vi), one can get an elementary spanning sub-
graph ofKp−1, by removing the edge the edge (uk, vi). This association is both one-one and onto.
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Every elementary spanning subgraph ofG andKp−1 differ only by aK2. Hence the corresponding
terms in the expression for permanent (Equation 2 of Theorem 1.2) remain the same, where as the
the corresponding terms in the expression for determinant (Equation 1 of Theorem 1.2) are of op-
posite sign. Thus per(G) = Per(Kp−1) = Dp−1 and det(G) = −det(Kp−1) = (−1)p−3(p− 2).

Theorem 3.4. LetG be a connected complete (2, 2) bipartite graph such that |V1| = p, |V2| = 1 and p > 1.
Let V1 induces Kp and V2 induces K1. Then (−1) is an eigenvalue of G with multiplicity p − 2. Further,

the eigenvector corresponding to (−1) is
(
0 c2 c3 . . . cp−1

p−1∑
i=1

ci 0

)T
where ci(1 ≤ i ≤ p− 1)

are arbitrary constants.

Proof. After relabeling the vertices, the adjacency matrix A of the graph G can be written as

A =


(J − I)p×p (C)p×1

(CT )1×p (0)1×1

 ,

where J is a square matrix of order pwith each entry one and CT =
(
1 0 0 . . . 0

)
.

Consider

det(A− µI) = det


−µ 1 1 . . . 1 1
1 −µ 1 . . . 1 0
...
1 1 1 . . . −µ 0
1 0 0 . . . 0 −µ

 ,

where µ is an eigenvale of A. Applying the elementary row operations Ri = Ri − Ri+1 for i =
2, 3, ..., p− 1 and Rj = Rj for j = 1, p, p+ 1 would yield,

det(A− µI) = det



−µ 1 1 1 . . . 1 1
0 −µ− 1 1 + µ 0 . . . 0 0
0 0 −µ− 1 1 + µ . . . 0 0
...
1 1 1 1 . . . −µ 0
1 0 0 0 . . . 0 −µ



= (1 + µ)(p−2) det



−µ 1 1 1 . . . 1 1
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...
1 1 1 1 . . . −µ 0
1 0 0 0 . . . 0 −µ


.

Thus, (−1) is an eigenvaluewith themultiplicity p−2. Consider the systemof equationsAX = µX
where X is the eigenvector given by

X =
(
x1 x2 . . . xp+1

)T
.
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When µ = −1, we get,

x1 + x2 + ...+ xp + xp+1 = 0

x1 + x2 + ...+ xp = 0

x1 + x2 + ...+ xp = 0

...
x1 + x2 + ...+ xp = 0

x1 + xp+1 = 0.

Since the algebraic multiplicity of (−1) is p − 2, the dimension of the eigenspace of (−1) must
be (p − 2). It is observed that xp+1 = x1 = 0 and the remaining p − 1 equations conclude that
x2 = c2, x3 = c3, ..., xp−1 = cp−1 and xp = −c2 − c3 − ...− cp−1.

Remark 3.1. The characteristic polynomial of a complete (2, 2) bipartite graph such that |V1| = p, |V2| =
1 (p > 1) and the parts V1, V2 induceKp,K1 respectively is given by

(x+ 1)p−2
[
x3 − (p− 2)x2 − px+ (p− 2)

]
.

Now, slight variation can be seen in the structure of above graphs. That is, the case where
|V1| = p, |V2| = q, (p ≥ q) and 〈V1〉 isKp and 〈V2〉 isKq is considered.

Theorem 3.5. Let G be a connected complete (2, 2) bipartite graph such that |V1| = p, |V2| = q, (p ≥ q)
and the part V1 inducesKp and V2 inducesKq . Then

det(G) =


(−1)p, if p = q,

(−1)p−q−1(p− q − 1), if p 6= q and q is even,

(−1)p−q−2(p− q − 2), if p 6= q and q is odd,

per(G) =

{
Dp−q, p 6= q,

1, p = q,

where Dn = n!
n∑
i=2

(−1)i
i! .

Proof. The proof is similar to the proof of Theorem 3.3. Let p > q. The elementary spanning
subgraphs H of G are union qK2s and H1, where H1 is elementary spanning subgraphs ofKp−q .
Also, there exists a one to one correspondance between elementary spanning subgraphs ofG and
Kp−q . That is, for each elementary spanning subgraph H1 of Kp−q , there exists an elementary
spanning subgraph H of G which is given by q K2 ∪H . For each H of G and corresponding H1

of Kp−q , the terms in the summation of 1 are same except k1. The term k1 corresponding to H is
k

′

1 + q, where k′

1 is the number of components of H1 which areK2s. Therefore,

det(G) =
∑
H

(−1)n−k
′
1(H1)−q−k2(H)2k2(H)

= (−1)q
∑
H

(−1)n−k
′
1(H1)−k2(H)2k2(H)

= (−1)q det(Kp−q).
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Since det(Kn) = (−1)n−1(n−1), the result follows. Similarly, per(G) = per(Kp−q) = Dp−q . When
p = q, the graph has only one elementary spanning subgraph given by union of K2s which are p
in number. Hence det(G) = (−1)p and per(G) = 1.

4 Golden Graphs

The golden ratio, also known as divine ratio has fascinated western philosophers, mathemati-
cians, scientists and almost all intellectuals in all fields of research. In literature, the numbers
1+
√
5

2 , 1−
√
5

2 , −1−
√
5

2 , −1+
√
5

2 are referred as golden ratios. A graph G is said to be a pure golden
graph if all the eigenvalues of G are golden ratios[8]. A graph G is a pure golden tree if and only
if G is P4 [8]. A graph G is said to be a golden graph, if at least one eigenvalue of G is golden
ratio [8]. Some of the golden graphs have been characterized in [9, 6]. It is noted that the path
graph Pn is golden graph if and only if n = 5k − 1 and the cycle graph Cn is golden graph if and
only if n = 5k for some positive integer k [9]. We know that a complete (1, 1) bipartite is never a
golden graph for any m and n. Unlike (1, 1) complete bipartite graphs, some classes of complete
(2, 2) bipartite graphs are golden graphs. In the next theorem, a complete (2, 2) bipartite graphs
having the golden ratios −1+

√
5

2 and −1−
√
5

2 as eigenvalues are obtained.

Theorem 4.1. Let G be a connected complete (2, 2) bipartite graph such that |V1| = p, |V2| = q, (p ≥ q)
and V1 inducesKp. Let 〈V2〉 containsKr. Then G is a golden graph.

Proof. After relabeling the vertices, the adjacency matrix A of the graph G can be viewed as

A =


(J − I)p×p Up×q

UTq×p Vq×q

 ,

where the matrices U and V are of the following forms:

U =


M(p−r)×(q−r) 0(p−r)×r

0r×(q−r) Ir×r

 and V =


K(q−r)×(q−r) 0(q−r)×r

0r×(q−r) 0r×r

 .

The matrices M , K are with arbitrary entries and J is matrix in which each entry is one. For
convinience, let

(J − I)p×p =


(J − I)(p−r)×(q−r) J(p−r)×r

Jr×(q−r) (J − I)r×r

 .

Note that the order of the identity matrix I is such that the operations mentioned above are well
defined. Consider AX = µX where µ is an eigenvalue and let X =

[
X1 X2 X3 X4

]T be the
eigenvector. The resulting system of equations is given by,

(J − I)X1 + JX2 +MX3 = µX1, (3)
JX1 + (J − I)X2 + IX4 = µX2, (4)

MTX1 +KX3 = µX3, (5)
X2 = µX4. (6)
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Taking X1 = X3 = 0, (3) implies, X2 ∈ Nullspace(J).
From (4), (J − I)X2 +X4 = µX2, which implies X4 = (µ+ 1)X2 (since JX2 = 0).
Subsituting the expression forX4 into (6)would give (µ2+µ−1)X4 = 0. SinceX4 6= 0, µ2+µ−1 =

0. This implies µ = −1+
√
5

2 , −1−
√
5

2 and G is a golden graph.

For the graph G(V1 ∪ V2, E) given in Theorem 4.1, we note the following.

Remark 4.1. In the proof of the above theorem, note that X2 ∈ Nullspace(J), where J is of the order
(p−r)×r, the dimension of which is r−1. The dimension of the eigenspace corresponding to the eigenvalues
−1+

√
5

2 and −1−
√
5

2 is at least (r − 1) asX1 = X3 = 0 andX4 = 1
λX2. Hence the algebraic multiplicities

of −1+
√
5

2 , −1−
√
5

2 is at least r − 1.

Remark 4.2. Suppose 〈V2〉 is Kr ∪ C, where C is either Kq−r or union of two or more complete graphs,
then −1+

√
5

2 and −1−
√
5

2 are eigenvalues with multiplicities at least (r − 1) irrespective of the structure of
C. The existence and multiplicity is depending only on the number of isolated vertices in 〈V2〉.

All the three graphs in the Figure 5 have eigenvalues −1+
√
5

2 and −1−
√
5

2 with multiplicities at
least one.

v
1

v2

v
1

v2

v
1

v
2

Figure 5: Complete (2, 2) bipartite graphs on 12 vertices.

5 Conclusion

Friendship theorem is one of the famous theorems in Graph theory, which states that, in a
group of people, if every two persons have a unique common friend, then there is a person in the
group who is friend of everyone. The authors of [7] have modified the situation as follows: Given
a collection of people, they can be partitioned into two groups, for any persons from the same
group who are not friends of each other, there is no person who is a common friend. The above
situation is modeled using (2, 2) bipartite graphs. The (2, 2) bipartite graph becomes a complete
(2, 2) bipartite graph when there are maximum number of pairs of people, each pair containing
one person from each groupwho are not friends such that there is at least one personwho is friend
of both the persons in the pair. All the above concepts are expected to have some applications in
social graph theory. The following open problem is proposed:

i) Characterize complete (k, k) bipartite graphs, where k is a positive integer greater than two.

ii) Decomposition of complete bipartie graphs ([2]) and complete k-partite graphs ([5]) have
been discussed in the literature. Similar decomposition can be tried for complete (2, 2) bipar-
tite graphs.
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